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Abstract

Recent years have witnessed the success of learning to

hash in fast large-scale image retrieval. As deep learning

has shown its superior performance on many computer vi-

sion applications, recent designs of learning-based hashing

models have been moving from shallow ones to deep archi-

tectures. However, based on our analysis, we find that gra-

dient descent based algorithms used in deep hashing models

would potentially cause hash codes of a pair of training in-

stances to be updated towards the directions of each other

simultaneously during optimization. In the worst case, the

paired hash codes switch their directions after update, and

consequently, their corresponding distance in the Hamming

space remain unchanged. This makes the overall learning

process highly inefficient. To address this issue, we propose

a new deep hashing model integrated with a novel gradi-

ent attention mechanism. Extensive experimental results on

three benchmark datasets show that our proposed algorithm

is able to accelerate the learning process and obtain com-

petitive retrieval performance compared with state-of-the-

art deep hashing models.

1. Introduction

With the explosive growth of visual content on the In-

ternet in recent years, learning to hash techniques have at-

tracted more and more attention in large-scale image re-

trieval. By mapping the raw data to binary codes while pre-

serving data similarity information in the Hamming space,

hashing techniques facilitate the storage of large-scale im-

ages data and enable efficient approximate nearest neigh-

bors search. Among various hashing techniques [29, 28],

supervised hashing has proven to be effective to generate

domain relevant and compact codes and achieve satisfactory

performance. With the development of deep learning, most

recently developed supervised hashing models are build on

top of deep neural networks to provide an end-to-end solu-

tion for image retrieval [14, 35, 3, 5, 2, 24]. In this paper, we

focus on deep learning based supervised hashing models.

The overall objective of hashing is to learn similarity-

preserving binary codes to represent images. In most su-

pervised hashing methods, supervision is provided in the

form of pairwise similarities, i.e. each training “example”

is in the form of a pair of instances with a label to denote

whether the paired instances are similar or dissimilar. Note

that though in some hashing methods [14, 34], supervision

is provided in the form of triplet ranking or list ranking, the

ranking information still depends on pairwise similarities.

Therefore, in most deep hashing models, the loss function

or the objective function is designed based on the predic-

tions on pairwise similarities.

In deep hashing models, similar to other deep learning

models, a commonly used optimization algorithm is gradi-

ent descent. Basically, given a labeled pair of instances,

based on the prediction error on their similarity, the hash

codes of pairs of instances are first updated based on gradi-

ent descent, and then the decomposed error would be back-

propagated to update other model parameters via gradient

descent. However, based on our analysis in Section 3, we

find that optimizing a deep hashing model by gradient de-

scent possibly leads to a “dilemma” in optimization, where

the hash codes of the pairs of instances may be always up-

dated towards the directions of each other simultaneously

during optimization. In the worst case, the paired hash

codes may switch their directions after update, and their in-

ner product or Hamming distance remains the same. When

the update of some training pairs falls into this dilemma,

their corresponding loss will not be decreased, which slows

down the learning process.

As the aforementioned dilemma is caused by backward

passing the gradients of both hash codes of a pair of training

instances, a solution to overcome this dilemma is to selec-

tively ignore or downgrade the gradient of one hash code of

the pair during back-propagation. In this way, the optimiza-

tion focuses on optimizing the desired code of one instance

of each pair only. As a result the hash codes of the paired

instances do not move towards the directions of each other

simultaneously. Now, the remaining issue is which one of a

paired hash codes should be chosen for update. This issue

becomes much more complicated when taking all training

pairs in a mini-batch into consideration.

15271



Inspired by the idea of learning to learn [1, 9], in this

paper, we cast the design of the hash code update selection

criteria as a learning problem. To be specific, we propose a

gradient attention mechanism to generate attentions for the

gradients of hash codes of each pair of training instances by

a neural network. With the gradient attention mechanism,

the aforementioned dilemma can be reduced and thus the

learning process can be accelerated.

In summary, our contributions are threefold:

• Firstly, we present the failure of gradient descent based

algorithms in learning a deep hashing model: the

learning process may get stuck as some pairs of hash

codes tend to switch their directions of each other dur-

ing optimization.

• Secondly, we propose a gradient attention mechanism

which is integrated in a deep hashing architecture to

address the aforementioned learning issue, and thus ac-

celerate the learning process.

• Thirdly, we apply our proposed method on different

loss functions and verify its performance with exten-

sive experiments on three large-scale image datasets.

2. Preliminaries: Deep Hashing Models

To train a deep hashing model for similarity-based image

retrieval, we are given N instances {xi}
N
i=1 as a training

set, together with side information on pairwise similarities

{sij}’s, where sij = 1 if xi and xj are similar and other-

wise sij = 0. The goal of a deep hashing model M(θ;x)
is to map input instances {xi}’s into K-dimensional feature

vectors {zi}’s, and then binarize them to obtain correspond-

ing binary codes {bi ∈ {±1}
K}’s, which preserve pairwise

similarities between instances. Here θ denotes the param-

eters of the model. In general, the binarization is done by

using a sign function b = sgn(z). However, due to the

ill-posed gradient of the sign function, each binary code is

often relaxed to a continuous code h ∈ [−1, 1]K during

training by replacing the sign function with the hyperbolic

tangent function tanh(·). Besides, we denote by hk and bk

the k-th entry of h and the k-th bit of b, respectively.
The objective for hashing is generally designed based on

the predicted pairwise similarities in the form of

min
∑

(i,j)∈P

ℓ(ŝij), (1)

where ℓ(·) is the loss function, P = {(i, j)} is the set

indexes of training pairs, and ŝij is the predicted similar-

ity of a training instance pair (i, j). The predicted sim-

ilarity is calculated either by inner product between bi-

nary codes [2, 3, 35], i.e. ŝij = 〈bi,bj〉 or by the re-

laxed Hamming distance between binary codes [5, 14], i.e.

ŝij = ‖bi−bj‖
2. Since ‖bi−bj‖

2 = 1

2
(K−〈bi,bj〉), the

Hamming distance and inner product are interchangeable

for binary codes. In this paper, given two binary codes, we

adopt their inner product ŝij = 〈bi,bj〉 and the inner prod-

uct between their continuous relaxations ŝij = 〈hi,hj〉 to

measure their similarities.
Similar to other deep learning models, a deep hashing

model is generally optimized by mini-batch stochastic gra-
dient descent (SGD) as θ← θ−α ∂ℓ

∂θ
. The gradient of the

model parameter θ at different layers is computed by the
backward propagation. In deep hashing, the partial deriva-
tive ∂ℓ/∂ŝij is first computed. Then the partial derivative

of the k-th bit of hi, denoted by hk
i , is computed as

∂ℓ

∂hk
i

=
∑

j

∂ℓ

∂ŝij

∂ŝij
∂hk

i

. (2)

Finally, the gradient ∂ℓ/∂θ is computed as

∂ℓ

∂θ
=

∑

i

∂ℓ

∂hi

∂hi

∂θ
, (3)

where ∂ℓ/∂hi = [∂ℓ/∂h1
i , ∂ℓ/∂h

2
i , ..., ∂ℓ/∂h

K
i ]⊤.

The goal of optimization is to update the model param-

eters θ. However, it is not clear how the intermediate vari-

ables, such as h, change after update. To analyze the update

behaviors of h, we present the following lemma.

Lemma 1. Given a composite function g(y) where y=f(x)
is a scaler and x is a vector. If x is updated by gradient

descent, i.e. x
+ = x−α ∂g

∂x
where α is a step size, then y

approximately changes along the negative of its gradient,

i.e. y+=f(x+)≈y−α̂ ∂g
∂y

, where α̂ is some positive scaler.

Proof. By applying first-order Taylor expansion of f(x+)
on x, we have

y+ − y = f(x+)− f(x) ≈

〈

∂y

∂x
, x+ − x

〉

= −α

〈

∂y

∂x
,
∂g

∂x

〉

= −α

〈

∂y

∂x
,
∂g

∂y

∂y

∂x

〉

= −α

∥

∥

∥

∥

∂y

∂x

∥

∥

∥

∥

2
∂g

∂y
= −α̂

∂g

∂y
,

where α̂
.
= α

∥

∥

∥

∂y
∂x

∥

∥

∥

2

. This completes the proof.

By substituting θ, any bit of h and tanh(M(θ)) into the

variables x, y and f(x) in Lemma 1, respectively, we find

that after θ is updated by gradient descent, the continuous

code h change along its negative gradient. This allows us

to study the change of h by its gradient instead of drilling

down to the gradient of model parameters.

3. The Dilemma of Gradient Descent

To study the limitations of gradient descent based algo-
rithms for deep hashing, we first focus on a simple case
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Figure 1. Possible changes of hi and hj during update. A horizon-

tal axis is added to better visualize the location of hi and hj

where there is only one pair of training instances (i, j),
whose similarity ground truth is “+1”, i.e., they are simi-
lar to each other. Suppose their current one-bit continuous
codes are hi = −1 and hj = 1, respectively. The loss is
simply defined as ℓ = 1 − ŝij = 1 − hihj . Obviously, the
loss is positive and the current codes are not optimal, which
need to be updated. The gradients of hi and hj are

∂ℓ

∂hi

=
∂ℓ

∂ŝij

∂ŝij
∂hi

= −hj and
∂ℓ

∂hj

=
∂ℓ

∂ŝij

∂ŝij
∂hj

= −hi,

respectively. Based on Lemma 1, the values of hi and hj

after update, denoted by h+

i and h+

j , respectively, can be
expressed as follows:

h+
i = hi − αij

∂ℓ

∂hi

= hi + αijhj ,

h+
j = hj − αji

∂ℓ

∂hj

= hj + αjihi,

where αij and αji are some positive scalers. The update

rules show that hi moves towards the direction of hj , tend-

ing to be of the same value as hj . And same for hj . Note

that when hi and hj become the same, the hash codes are

optimal as the predicted similarity is correct. However, in

the worst case, by assuming that the values of αij and αji

are large, e.g., αij = αji = 2, we have h+

i = hj = 1

and h+

j = hi = −1. It turns out that their inner product

h+

i h
+

j = −1 remains unchanged after update, and thus the

loss after update remains the same. In the next round of up-

date, both hi and hj will switch their signs while their cor-

responding loss does not decrease, and this happens over

and over again. We call this phenomenon the “dilemma”

of updating deep hashing models by gradient descent. Note

that the dilemma also happens on dissimilar pairs when their

codes are updated to move away from each other.

In practice, αij and αji may be small and the afore-

mentioned case may not happen at one step. However,

when |hi| < |αijhj | and |hj | < |αjihi|, both codes will

change their signs simultaneously as illustrated in Figure

1(a), which still results in an incorrect similarity prediction.

To overcome the aforementioned dilemma and generate

optimal codes such that the loss can be decreased fast, a

possible solution is to reduce the probability of changing the

signs of the paired codes simultaneously. This can be done

by reducing the update scale, i.e. αij
∂ℓ
∂hi

and αji
∂ℓ
∂hj

. In

this way, the probability that both codes changes their signs

becomes small. In an ideal case, if only one code changes

its sign, then the update could achieve the optimal values as

shown in Figure 1(b). To reduce the update scale, one can

set a small learning rate, which, however, may lead to a slow

learning process. Another way is to add a quantization loss,

with which an opposite gradient is added to ∂ℓ
∂hi

to reduce its

scale. However, since a quantization loss naturally hinders

the sign change of codes, its coefficient needs to be carefully

controlled in the objective function. Otherwise, the learning

process may be sluggish.

Note that in Figure 1(b), hj first moves from +1 to-

wards hj , and moves backwards to +1 after hi becomes

postive. The process that hj moves towards hi is unneces-

sary. A better solution is to selectively update one of the

paired codes while keeping the other unchanged when the

prediction on their similarity is incorrect. This code update

selection strategy could avoid the signs switch problem ef-

fectively as shown in Figure 1(c). However, when the pre-

dicted similarity is correct, it is better to update both hi and

hj towards their sign value. Therefore, to update hi and hj ,

the weights of their gradients should be carefully chosen

such that only one code is updated when the predicted sim-

ilarity is not correct, while both codes are updated when the

predicted similarity is correct. To implement this idea on

top of a deep hashing model, we propose a novel gradient

attention mechanism to generate weights on the gradients of

hash code pairs.

4. Gradient Attention Network

Our proposed gradient attention mechanism is applica-
ble to any deep hashing model with pairwise loss function.
As demonstrated in Section 3, for a specific pair (i, j), if
the predicted similarity is not correct and the partial deriva-
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tives of hk
i and hk

j are both back-propagated, hk
i and hk

j may
change sign at the same step, and the loss may not decrease
after update. To generate appropriate weights of derivatives
of hk

i and hk
j in back-propagation, we propose to train a gra-

dient attention network to generate attentions on the deriva-
tives of hk

i and hk
j . Before the derivatives of hk

i and hk
j are

passed backward to θ, the attention weights generated by
the gradient attention network are applied on them. Then
the gradient of θ is computed based on the weighted deriva-
tives of hk

i and hk
j , instead of the original ones. Considering

all training pairs in a batch, the weighted derivatives of hk
i

is computed as

∂ℓ

∂hk
i

=
∑

j

βk
ij,i

∂ℓ

∂ŝij

∂ŝij
∂hk

i

,

∂ℓ

∂hk
j

=
∑

i

βk
ij,j

∂ℓ

∂ŝij

∂ŝij
∂hk

j

,

(4)

where βk
ij,i and βk

ij,j are a pair of attention weights gen-

erated for derivatives of the pair of binary bits hk
i and hk

j ,

respectively. By substituting the weighted derivatives in (4)

into (3), we obtain a new gradient, denoted by g(ϕ), where

ϕ is the parameters of gradient attention network, for opti-

mizing the deep hashing model.

4.1. Architecture of Gradient Attention Network

For the gradient attention network, we feed the factors

that may affect the change of hk
i in gradient descent as input.

Considering a single pair (i, j), the change of hk
i is affected

by its original value and derivative regarding to the loss of

this pair only, i.e. ∂ℓ
∂ŝij

∂ŝij

∂hk
i

. Considering all training pairs,

the change of hk
i is affected by its original value and its

derivative regarding to loss of all training pairs, i.e. ∂ℓ
∂hk

i

in

(2). Therefore, the input is hk
i , ∂ℓ

∂ŝij

∂ŝij

∂hk
i

and ∂ℓ
∂hk

i

.

To obtain the attention weights for the k-th bit of a pair of
codes, the attention network first generates a feature value
ykij,i for each side of the pair, and then normalizes it via a
softmax function as

βk
ij,i =

exp(yk
ij,i)

exp(yk
ij,i) + exp(yk

ij,j)
(5)

and

βk
ij,j =

exp(yk
ij,j)

exp(yk
ij,i) + exp(yk

ij,j)
. (6)

For the architecture of gradient attention network, it con-

tains two fully connection layers with 100 hidden units. The

overall architecture of the deep hashing model together with

the gradient attention network is shown in Figure. 2.

4.2. Loss Function of Gradient Attention Network

In this section, we introduce the loss function for train-
ing the gradient attention network. Note that the gradient
attention mechanism is proposed to reduce the probability

Pairwise
Loss

input conv and fc fc hash layer

predicted similarity

Gradient Attention Network

forward of original network

back-propagation of original network

forward of Gradient Attention Network

Figure 2. The network structure of the proposed deep hash algo-

rithms.

that a code pair change their bits at the same step and thus
accelerate the learning process. Therefore, the quality of
the attention weights can be measured by the decrease of
loss in an update. With the gradient attention network, the
parameters θ of hashing model is updated by

θ+ = θ − αg(ϕ), (7)

where g(ϕ) is the new gradient generated by the gradi-
ent attention network and ϕ is the parameter of the gradi-
ent attention network. The loss after update is ℓ(θ+) =
ℓ(θ − αg(ϕ)) and the decrease of loss is ℓ(θ) − ℓ(θ+).
To obtain a better gradient attention network, we should
maximize the decrease of loss. By excluding the constant
term ℓ(θ) of the gradient attention network ϕ, we obtain
the primary objective for optimizing the gradient attention
network as

min
ϕ

ℓ(θ − αg(ϕ)).

Note that the update of θ in (7) is by the simplest form

of SGD. In practice, θ can be updated by any first-order

optimizer as long as θ+ is a function of g(ϕ). And ϕ can

be updated by any optimizer. The algorithm of our pro-

posed algorithm, Gradient Attention deep Hashing (GAH),

is summarized in Algorithm 1.

5. Related Works

Learning based hashing methods have been studied for

years. Based on the information used in learning, they

are categorized into unsupervised-based [30, 21, 10, 19],

supervised-based [20, 22, 17, 23], and semi-supervised-

based [26, 27] hashing models. Recently deep learning

based hashing approaches demonstrate the superiority over

the shallow approaches taking handcrafted features as input.

Deep hashing was first proposed in [32] known as CNNH,

which learns hash codes and a neural network based hashing

model in two separated stage. In order to learn feature rep-

resentation and hashing codes simultaneously, DHHN [14]

was proposed. Later, [16, 35, 3, 2, 5, 33] were proposed

with various loss functions to preserve similarity informa-

tion and different quantization techniques to tackle the issue

of continuous relaxation of binary codes.
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Algorithm 1 Deep Hashing with Gradient Attention (GAH)

1: repeat

2: Sample a mini-batch of pairs from training set

3: Evaluate loss ℓ(θ) and backward propagate to obtain

the derivative ∂ℓ/∂ŝij
4: Take hk

i , ∂ℓ
∂ŝij

∂ŝij

∂hk
i

and ∂ℓ
hk
i

as input to gradient atten-

tion network to obtain attention weights ykij,i
5: Compute βk

ij,i and βk
ij,j by (5) and (6)

6: Compute the new derivative ∂ℓ
hk
i

=
∑

j β
k
ij,i

∂ℓ
∂ŝij

∂ŝij

∂hk
i

,

and back-propagate it to obtain gradient of θ as g(ϕ).

7: Update θ by θ+ = θ − αg(ϕ)
8: Evaluate the loss after update as ℓ(θ − αg(ϕ))
9: Update ϕ using back-propagation

10: θ ← θ+

11: until a fixed number of iterations

In our work, we train an extra model to change the gra-

dient in back-propagation, which is related to learning to

optimize. Learning to optimize algorithms [1, 15, 31] are

proposed fairly recently to learn to generate gradient de-

scent for general objective function optimization. In [1],

the gradient generator is RNN, which is updated by gra-

dient descent. In [15], learning to optimize is done based

on reinforcement learning. In [31], the authors proposed a

hierarchical RNN architecture which is scalable for large-

scale problems. Unlike existing learning to optimize algo-

rithms, our proposed gradient attention network is specially

designed for deep hashing model. Besides, our gradient at-

tention network only generates the gradient of an intermedi-

ate variable and the gradient of original network parameters

are obtained by the back-propagation algorithm, while the

learning to optimize algorithms generate gradients for each

parameter and does not depend on back-propagation.

6. Experiments

6.1. Datasets and Settings

To evaluate the performance of the proposed algorithm

GAH against state-of-the-art hashing methods, we conduct

experiments on three benchmark datasets: CIFAR-10 [25],

NUS-WIDE [6], ImageNet [7].

CIFAR-10 consists of 10 classes, with each class con-

taining 6, 000 32 × 32 color images. We follow [2, 35, 14,

32] to construct the training set by randomly sampling 500
images per class and the query set by randomly sampling

100 images per class. The remaining images are used as

database for retrieval.

NUS-WIDE contains nearly 270, 000 images collected

from Flickr. Most of images are associated with one or

multiple labels from a given 81 concepts. After removing

images that are associated no labels and that are not avail-

able, there are about 180, 000 images. We randomly select

10, 000 images as training set and 5, 000 images as query

set, and use the remaining as database.

ImageNet is a large scale image benchmark for visual

recognition challenge and is widely used to evaluate per-

formance of deep learning model. In the dataset, there are

more than 1.2 million images, each with one class label

from 1, 000 categories. We follow [3, 5] to randomly se-

lect 100 categories and use images in training set to form

the database. From the database, we randomly sample 130
images per category to train the hashing model. The image

in validation set are used as queries.

As a common protocol in existing hashing methods, the

ground truth similarity information are defined according

to the class labels. If two instances share at least one la-

bel, they are considered as similar and assigned similarity

as sij = 1; otherwise, their similarity sij = 0. Note that the

data imbalance is observed in the dataset after construct-

ing the similarity label in this way. For CIFAR-10 and

ImageNet, the ratio between dissimilar and similar pairs

roughly equals to the number of categories. For NUS-

WIDE, the ratio is around 5.

The performance of hashing model is evaluated based on

three metrics: mean average precision (MAP), Precision-

Recall curves, and Hamming lookup Precision curves

within Hamming radius 2. Specially, we follow [3, 35] to

evaluate MAP on top 5, 000 returned samples on CIFAR-10

and NUS-WIDE datasets and on top 1, 000 returned sam-

ples on ImageNet.

We compare the performance of the proposed GAH with

nine classical or state-of-the-art hashing methods: two are

unsupervised methods LSH [4] and ITQ [10]; two are super-

vised shallow methods ITQ-CCA [10] and KSH [20]; five

are deep learning based methods CNNH [32], DNNH [14],

DPSH [16], HashNet [3] and GH [24].

6.2. Implementation details

We implement our model with PyTorch. The deep hash-

ing model part in the proposed GAH utilizes same structure

as AlexNet [13], except that the last fully connected layer

fc8 is replaced by a fully connected hash layer with output

K-dimension features, followed by an activation function

tanh(·). The optimizer for hashing model of GAH is SGD

with 0.0005 weight decay, 0.9 momentum and step decay-

ing learning rate. As for the gradient attention network of

GAH, it consists of two fully connected layers with 100 hid-

den units and it is optimized by Adam [12]. The mini-batch

size of images is fixed to 128. For shallow hashing models,

we feed them DeCAF7 features [8], i.e. the fc7 output of

pretrained Alexnet, as input.

For the loss function to train the hashing model, we
choose the Weighted Maximum Likelihood (WML) estima-
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Table 1. Mean Average Precision (MAP) over three datasets with different bit lengths.

Method
CIFAR-10 NUS-WIDE ImageNet

16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits 16 bits 32 bits 48 bits 64 bits

GAH 0.6985 0.7531 0.7605 0.7607 0.7235 0.7576 0.7662 0.7733 0.5034 0.6231 0.6563 0.6821

HashNet [3] 0.6896 0.7446 0.7537 0.7566 0.7218 0.7561 0.7585 0.7592 0.4633 0.5991 0.6417 0.6563

GH [24] 0.5927 0.6640 0.6518 0.6763 0.6840 0.7425 0.7430 0.7459 0.3383 0.4878 0.4833 0.4893

DPSH [16] 0.4355 0.5780 0.6246 0.6331 0.6822 0.7152 0.7263 0.7356 0.2022 0.3584 0.4214 0.4492

DNNH [14] 0.4876 0.5182 0.5025 0.4982 0.5532 0.5827 0.5976 0.6081 0.4373 0.5565 0.5560 0.5813

CNNH [32] 0.4886 0.5023 0.5251 0.5216 0.5228 0.5436 0.5418 0.5530 0.2204 0.2720 0.3010 0.2941

KSH [20] 0.4138 0.4998 0.5519 0.5668 0.6135 0.6731 0.6960 0.7229 0.4112 0.5211 0.5731 0.5984

ITQ-CCA [10] 0.2040 0.1582 0.1359 0.1288 0.5675 0.5324 0.4905 0.4665 0.2481 0.3954 0.4923 0.5640

ITQ [10] 0.2559 0.2672 0.2786 0.3017 0.6200 0.6475 0.6591 0.6657 0.2267 0.3254 0.3827 0.4179

LSH [4] 0.1716 0.1858 0.2094 0.2350 0.3632 0.4192 0.4663 0.4980 0.0671 0.1303 0.1901 0.2406
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Figure 3. Precision-recall curve @ 64 bits over three datasets.
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Figure 4. Precision within Hamming radius 2 over three datasets.

tion of the hash code which is defined as

min
θ

ℓ(θ)

=
∑

(i,j)∈P

wij(log(1 + exp(γ〈hi,hj〉))−γsij〈hi,hj〉), (8)

where P = {(i, j)} is the set indexes of training pairs; γ is
the parameter in the adaptive sigmoid function to formulate
a conditional probability of the predicted similarity given
two hash codes; and wij is the weights to address the im-
balance issue between similar and dissimilar training pairs,
which is defined as

wij =

{

|S0|/|S1|, if sij = 1,

1, if sij = 0,

where S0 = {sij ∈ S : sij = 0} and S1 = {sij ∈ S :
sij =1}. The above loss function has been widely used in

deep hashing methods [16, 35, 3, 2], together with different

types of quantization losses. In our model, the quantization

loss is not necessary, because our model does not require

a quantization loss to reduce the probability of codes signs

switch during training. Our loss function naturally pushes

hk
i and hk

j to its binarized value bi and bj when hk
i h

k
j has

the same sign as (sij − 0.5). Note that the original GH [24]

is proposed with a classifer on hash code and is trained by

minimizing the Cross Entropy loss. For fair comparison,

we assume only similarity label is available during training

and thus its loss function is changed to the one in (8) with a

quantization loss defined in [24].
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Figure 5. Comparison between methods with and without gradient attention mechanism: number of bit pairs fallen into the dilemma
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Figure 6. Comparison between methods with and without gradient attention mechanism: training loss through training process

6.3. Results and Analysis

The mean average precision of different hashing meth-

ods is shown in Table 1. From Table 1, it is observed that

our proposed GAH substantially outperforms all compar-

ison methods. Compared to deep learning based hashing

methods, GAH outperforms the best competitor, HashNet,

by roughly 0.1% to 3.9%. Besides, GAH outperforms GH

by abouth 1.5% to 19.3%. Note that the loss function and

settings of HashNet, GH and GAH are nearly the same, ex-

cept that HashNet is integrated with learning by continu-

ation technique to learn exactly binary code, GH is inte-

grated with discrete optimization technique and an addi-

tional quantization loss term, while GAH is integrated with

a gradient attention network. Therefore, the superiority

of GAH in MAP to HashNet and GH verifies the contri-

bution of gradient attention mechanism to generate binary

code with high quality. When compared to shallow hashing

methods with deep feature as input, GAH achieves boost by

a large margin. It outperform the best competitor KSH, by

at least 5.1% over all datasets. This verifies the advance of

end-to-end deep learning based hashing methods, which si-

multaneously learn feature representation and binarization.

The retrieval performance in terms of precision-recall

curve is shown in Figure 3. GAH outperforms comparison

methods. In particular, GAH achieves much higher preci-

sion at lower recall levels. This is desirable for precision-

first retrieval, which is widely implemented in practical sys-

tems. To evaluate the performance of hashing methods

in efficient binary code retrieval using Hamming lookup,

which costs O(1) time for a query, we test the precision

within Hamming radius 2 on all methods. The results are

shown in Figure 4. The proposed GAH algorithm still out-

performs other methods when code length is small, indi-

cating its effectiveness in large scale retrieval with compact

code. However, when the code length is large, its perfor-

mance may be weaker than DNNH, DPSH or GH.

6.4. The study of Gradient Attention Mechanism

In this section, we first evaluate the positive effect of

gradient attention mechanism on reducing the number of

bit pairs in “dilemma” that a bit pair switch their signs si-

multaneously when their predicted similarity is not correct.

As a baseline, we train the hashing model in GAH with-

out integrating gradient attention network, and denote it by

GAH0. The result of average number of bit pairs fallen in

the dilemma every 20 training iterations is shown in Figure

5. Note that all dropout layers are disabled in this experi-

ment. The result demonstrates that after a certain number

of iterations, the gradient attention mechanism contributes

to reducing the number of bit pairs that change their signs in

the same step. Compared to GAH0, GAH reduces the num-

ber of bit pairs in the dilemma by about 13.1%to 61.9% on

CIFAR-10 after 200 iterations. On NUS-WIDE and Ima-

geNet, after 100 iterations, the reduction percentage is at

least 26.1% and 10.8%, respectively.

Besides, we test the the decrease of training loss of the

hashing model, i.e. ℓ(θ), to evaluate the gradient atten-
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Table 2. Comparison of different gradient weights assignment

strategies on ImageNet.

Baselines GAH B1 B2 B3 B4

MAP 0.6821 0.6483 0.6536 0.5670 0.6577

tion mechanism in accelerating the learning process. Hash-

Net [3] and GAH0 are used as baselines. Besides, if gradi-

ent attention mechanism does not work, it will output same

weights for a pair and this is similar to reduce the gradient

to its half. To avoid attributing the learning acceleration to

smaller learning rate, GAH0 and HashNet with half learn-

ing rate are used as baselines as well, and they are denoted

by GAH0-half and HashNet-half. From the result shown

in Figure 6, we observe that the training loss of the pro-

posed method is large at the beginning when the gradient

attention network is not well-trained. However, its loss de-

creases faster than comparison methods, finally reaches the

lowest loss among all the methods. These results verifies

that the gradient attention mechanism contributes to accel-

erating the learning process.

To furture verify the effcet of gradient attention meach-

nism, we compare it with four different baselines to gener-

ate weights on gradients of hash code pairs: B1) assigning

weight 1 randomly to one gradient; B2) assigning random

weights to two gradients; B3) assigning weight 1 to larger

gradient; B4) assigning weight 0 to smaller gradient. The

experiments are run on ImageNet Dataset with 64-bit codes.

The result is shown in Table 2. The performance of B1 and

B2 is close to the model updated by original gradient, be-

cause the expected gradient direction of B1 and B2 is same

as the original gradient. Due to larger variance of weighted

gradient, the performance of B1 is slightly worse than B2.

For B4, its performance is better than B1, B2 and slightly

better than HashNet, which shows that the hash code qual-

ity can be improved if we correctly choose one of the paired

codes and update it while keeping the other unchanged. But

it is not the best strategy to always choose the code with

larger gradient to update. The gradient attention mecha-

nism is able to generate better weights than B4 and thus its

performance is the best. This verifies the necessary of gradi-

ent attention mechanism to improve the learning of hashing

model and generate high-quality binary codes.

6.5. GAH with unsupservised loss function

To verify the performance of GAH on a different pair-
wise objective function, we perform experiment on CIFAR-
10 dataset in unsupervised setting. We follow [24, 11] to
minimize the cosine similarity difference between the fea-
tures encoded in Euclidean space and the hash code in Ham-
ming space. Denote the feature in Eucldiean space for the

Table 3. MAP @5000 on unsupservised CIFAR-10.

Method 16 bits 32 bits 48 bits 64 bits

GAH 0.4796 0.4986 0.5057 0.5165

GH [24] 0.4114 0.4590 0.4942 0.5034

DeepBit [18] 0.1811 0.2171 0.2391 0.2468

ITQ [10] 0.3461 0.3845 0.4080 0.4364

LSH [4] 0.2022 0.2216 0.2331 0.2992

i-th image by zi, the loss function is defined as

ℓ(θ) =
1

N2

∑

(i,j)∈P

∥

∥

∥

∥

1

K
〈hi,hj〉 − cos(zi, zj)

∥

∥

∥

∥

2

, (9)

where cos(·, ·) means the cosine distance. To compare

the performance, we apply the same loss function (9) to

GH [24] with a quantization loss term [24] and run another

three unsupervised hash methods, including DeepBit [18],

ITQ [10] and LSH [4] on CIFAR-10 dataset. Note that in

this experiment, we sample 1, 000 images per class as query

set and the remaining 50, 000 images are used as training

set and database. The network structure of deep hashing

models follows the setting in [24, 18], which is based on

VGG16. As for shallow learning based hashing methods,

we feed them the 4096-d feature extracted by VGG16.

The results are displayed in Table 3. With a different ob-

jective function, the proposed method GAH is still able to

outperform GH and other competitors. The boost of GAH

over the best competitor GH is more than 1.1% when the

code length is 48 or 64. For small code length (i.e. 16 and

32 bits), GAH outperforms GH by a large margin as about

4%. These results verify that the gradient attention mecha-

nism is applicable to different pairwise loss functions.

7. Conclusion

In this paper, we present the dilemma that pairs of bi-

nary codes may switch their signs or directions frequently,

but their pairwise similarities in Hamming space remain

unchanged. This leads to an inefficient learning process.

To address this issue, we propose to integrate the hashing

model with a novel gradient attention mechanism to gen-

erate appropriate weights to gradients of hash code pairs.

Empirical studies on three benchmark datasets with both

supervised objective and unsupervised objective verifies the

effectiveness of the gradient attention mechanism on accel-

erating learning for deep hashing.
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